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. Fig. 1. Lumped model of BARITT oscillator used for locking analysis.
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Fig. 2. Locking characteristics of BARITT oscillator. w, = 3.88 X 10° 571,
Q; =17, Pyp=43 mW, G, =0.37 mS. (1) Optical hole injection, 7, =1 45
ns. (2) Optical electron injection, 7, = 0.54 ns. x x x x x: mcasured —
calculated.

where wp, denotes the modulation frequency of the optical signal,
7 the transit time of the optically injected holes or electrons,
respectively, P the total sideband power of the modulated optical
signal, A the vacuum wavelength of the light, and % a correction
factor taking into. account-the quantum efficiency and the losses
due to reflection at and absorption in the metallic contact. If

neither the velocity of holes nor the velocity of electrons is -

saturated within the BARITT device, the transit time 7, of
electrons is shorter than the transit time 7, of holes, hence the
locking bandwidth in case of optical electron injection should be
larger than in case of optical hole injection.

In the locking characteristics of Fig. 2, experimental and
theoretical results are compared for optical hole and electron
injection. As- can be seen, the measured locking bandwidth in-
creases linearly with optical power, and the locking bandwidth in
case of electron injection is much larger than in the case of hole
injection, as predicted by theory. Intensity' modulated laser light
(A-=633 nm) was used as the optical locking signal. The loaded
@ factor was measured with conventional electronic injection
locking. The theoretical characteristics were calculated using the
measured oscillator and - circuit parameters, the numerically
calculated small-signal admittance Yj,, and the transit times 7,
and 7,.

As a result, the simple theory offers reasonable correlation as
compared with the experimental results. However, the measured
locking bandwidths are approximately 50 percent larger than the
calculated bandwidths. This may be traced back to the fact that
the simple theory does not allow for an optical modulation of the
device admittance Y, and its influence upon the locking char-
acteristics. The locking bandwidth of about 0.6 percent as ob-

tained with BARITT oscillators, is similar to the bandwidths-

predicted for IMPATT oscillators [1] and for transistor oscillators
[2], [3]. Experimentally, it has been shown that optical injection
locking of BARITT oscillators is possible. A locking bandwidth
of 0.6 percent is obtained which may be viewed as a useful value.

There is reasonable agreement between measurement and theory.
In the higher microwave range, it is recommended to use light
modulated by a subharmonic of the oscillator frequency as the
optical injection signal because; at present, it might be difficult to
modulate laser light using high microwave frequencies.
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Comments on “A Rigorous Technique for Measuring
the Scattering Matrix of a Multiport Device with a
Two-Port Network Analyzer”

H. DROPKIN, SENIOR MEMBER, IEEE

The recent article' by Tippet and Speciale uses. the matrix
formulation of the generalized scattering parameter renormaliza-
tion transformation in the form

§’=(I-8) (§-T)I-SsT) '(1-5). (1)

Here S is the N X N scattering matrix of an N port with port line
impedances {, S’ is the transformed scattering matrix when the
port impedances are altered to Z, and T' is the diagonal matrix-of
reflection coefficients of Z as seen from line impedances {, and 7
is the identity matrix. ‘

Equation (1) can be simplified as follows:

S=(I-8)"'s(I-8)
s'—s=(1-8)"'[(s-T)(1-sT)"'-
The bracketed term is
(S—T)I~-ST) '=§(I-ST)(1-ST)""
—[(§=T)-S(I-ST)|(1-sT)™"
=—(I-8)T(I-5sT)""

Note the cancellation of the individual S terms. Since (f — §*) =
(I—SYI+S), the prefactor in (3) also cancels, with the fmal
result

(2)
sl(r-s). (3)

=S—(I+8S)T(I-ST) '(I-5). 4)

Equation 4 has reduced the number of matrix inversions needed
from 2 to 1. Also, S’ is now obtained by an additive correction to
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be applied to S, and these corrections contain I as an explicit
factor. When T is small (small line impedance changes), a good
first order approximation is

§'=S—(I+S8)T(I-S)

which has no matrix inversions.
In some cases the inverse required by (1) but not by (4) may
not even exist. A simple example is given by a matched lossless

two port for which
0 e'? )
S =
(610 0

and for which (7 — S) has determinant 0 for some values of 6.
Clearly, less extreme cases can be numerically difficult, especially
since the components of S are to be experimentally measured.

This form of the transformation should require less computa-
tion and have improved accuracy.

()

Reply? by John C. Tippet and Ross A. Speciale’

The authors of the original paper' would like to warmly
commend Dr. H. Dropkin for constructively contributing a fur-
ther simplification of the generalized scattering matrix renormali-
zation transform, and would like to take this opportunity to add
some related comments.

First, it is interesting to notice the alternative formulation of
the generalized transform, given in the original 1980 IEEE-CAS
symposium paper [2]

St=(I-T) (s-T)(I-Ts) '(I-T). (1)

This alternative form of the transform was obtained as an
application of the projective matrix transformation

S =TS+ )Ty S+ T,) (2)

first introduced in 1977 [3] and later generalized in 1981 [4]. The
form (1) has been successfully verified analytically in the 2X2
case of two-port networks [5] and it is, therefore, believed to be
totally equivalent to the original form given in [1]

S'=(I-S) (S-T)(I-5ST) '(I-$)
and to the simplified formulation found by Dropkin

(3)

S'=S—(I+8)T(I-ST) '(I-5). (4)

We have been so far unable to prove analytically the equivalence
of the ‘alternative form (1) the original form (3), in the general
case. It iy however, interesting to notice that, by exploiting the
identity :

r=(I-T) 'T(I-T) (3)

and proceeding in a way similar to that suggested by Dropkin, it
is possible to simplify the form (1) to
S'=(I1+T)S(I-T8) '(I-T)-T. (6)
This second simplified form (6) also requires only one matrix
inversion and the matrix to be inverted, 7-TS, is in general
different from the matrix /- ST that must be inverted when using
the Dropkin form (4). These matrices are either both singular or
both nonsingular at the same time. Furthermore, it should be
easier to prove the mutual equivalence of the two simplified
forms (4) and (6) analytically. While attempting this proof, we
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would like to propose it as a challenge to the adventurous reader.
Another aspect of the generalized renormalization transform that
we have not been able to prove analytically relates to what may
be called the inverse transform, expressing the matrix S as
function of the matrix S’. Considering the definition of the
reflection-coefficient-matrix I" we would expect to be able to
invert any of the forms (1), (3), (4), and (6) by simply exchanging
the matrices S and S’, while at the same time changing the sign of
the matrix I'. In this connection, it is easy to see that the form (6)
may be solved for the matrix S, obtaining

S=(I-T)(I+8T) '(s+T)(1-T) ' (7)
and thus this inverted form may be proved to be equivalent to
S=(I-T)S(I+T8) '(I+T)+T (8)

and should also be equivalent to
S=8"+(I+8)T(I+8T) (I-5). 9)

These last two forms have been obtained from (6) and (4),
respectively, by mutually exchanging the matrices S and §’ and
changing the sign of the matrix I', as indicated before.

Finally, we would like to point out that the success of our
experimental verification of the renormalization transform is
clearly a consequence of the fact that our transform was derived
for scattering matrices defined on the basis of voltage waves (or
traveling waves) rather than for power-wave scattering matrices.
This is the kind of scattering matrix obtained from any calibrated
automated network analyzer. In these respects, we would like to
express our total agreement with Professor Wood’s statement [6]
declaring the impossibility of performing power-wave scattering
measurements on any known form of ANA. Indeed, all known
forms of ANA use voltage sensors to monitor the incident,
reflected, and transmitted waves and could not possibly sense
power-waves under practical conditions, where the ANA mea-
surement-port impedances, as seen from the device under test, are
both complex and frequency-dependent. A generally unrecog-
nized aspect of ANA calibration methods is that these have the
capability of eliminating measurement-port mismatch-errors, be-
cause of including implied voltage-wave-scattering-matrix renor-
malizations to the nominal wave-impedance of at least one of the
calibration standards.

It would appear that the concept of power-wave scattering
matrix has outlived its usefulness, especially considering the fact
that the net active power flow entering a network through any
given cluster of n ports may be expressed by means of the
Hermitian form

Po=—| - - _ . _____2 =
al | (z07'-z (z5) '+ 727" | |a,

(10)

Where the a,’s and b,’s (i =1,- - -,n) are the incident and emerg-

ing voltage-waves, respectively, and Z, is the wave-normalization
impedance matrix (Z* = Z).
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Comment on “The Exact Noise Figure of Amplifiers
with Parallel Féedback and Lossy Matching Circuit”

JAKOB ENGBERG*

I found the short paper of K. B. Niclas “The Exact Noise
Figure of Amplifiers with Parallel Feedback and Lossy Matching
Circuits”! very interesting, but, except for the approximated
formulas, it contained only little new information, since my paper
“Simultaneous Input Power Match and Noise Optimization using
Feedback” [2] included most of the formulas. In that paper, I
have developed a general form of noise parameters of a three-port
with combinations of parallel and series feedback (or imbedding)
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elements. These formulas include both the formula of Niclas and
of Iversen [1, [9]]. The formulas have been used in the lossless
case to develop an amplifier with simultaneous noise and power
input match.

Reply’ by Karl B. Niclas®

While I was aware of the existence of Mr. Engberg’s paper,
“Simultaneous Input Power Match and Noise Optimization using
Feedback” [2], I was not able to secure a copy and consequently
was unaware of its contents until his comments arrived. However,
after careful study of his publication, I have to disagree with his
conclusion that the information in my short paper contains only
little new information outside of the approximation formulas. It
must have escaped Mr. Engberg that his formulas for the equiva-
lent noise parameters of the parallel feedback amplifier (3) in [2]
deviate from mine (4) in [1] and only for the special case of
Yy =0 (Yzp = 0) was I able to find agreement for the parameters
R and Y] (R} and Y[,). Since no derivations are presented in
Mr. Engberg’s paper, I am not in a position to explain the
discrepancies. It should be noted, however, that results calculated
with formulas given in my paper are in perfect agreement with
those computed with the aid of Compact which is based on
Hillbrand’s and Russer’s correlation matrix [3], [4].
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