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Fig. 1. Lumped model of BARITT oscillator used for locking anafysis.

qP,mW

Fiz. 2. Lockine characteristics of BARITT oscillator. u,,= 3.88X 109 s -‘,

ZL = 17, PHF: 4.3 mW, CL= 0.37 mS. (1) Optical hole ‘injection, TP = 1.45

ns. (2) Optical electron injection, ~. = 0.54 ns. x x x x x: measured; —:

calculated.

where ~Pk denotes the modulation frequency of the optical signal,

.T the transit time of the optically injected holes or electrons,

respectively, P the total sideband power of the modulated optical

signal, A the vacuum wavelength of the light, and q a correction

factor taking into account the quantum efficiency and the losses

due to reflection at and absorption in the metallic contact. If

neither the velocity of holes nor the velocity of electrons is

saturated within the BARITT device, the transit time r. of

electrons is shorter than the transit time rP of holes, hence the

locking bandwidth in case of optical electron injection should be

larger than in case of optical hole injection.

In the locking characteristics of Fig. 2, experimental and

theoretical results are compared for optical hole and electron

injection. As can be seen, the measured locking bandwidth in-

creases linearly with optical power, and the locking bandwidth in

case of electron injection is much larger than in the case of hole

injection, as predicted by theory. Intensity modulated laser light

(k= 633 nm) was used as the optical locking signal. The loaded

Q factor was measured with conventional electronic injection

locking. The theoretic+ characteristics were calculated using the

measured oscillator and circuit parameters, the numerically

calculated small-signal admittance Y~, and the transit times 7P

and Tn.

As a result, the simple theory offers reasonable correlation as

compared with the experimental results. However, the measured

locking bandwidths are approximately 50 percent larger than the

calculated bandwidths. This may be traced back to the fact that

the simple theory does not allow for an optical modulation of the

device admittance Y~ and its influence upon the locking char-

acteristics. The locking bandwidth of about 0.6 percent as ob-

tained with BARITT oscillators, is similar to the bandwidths

predicted for IMPAT”T oscillators [1] and for transistor oscillators

[2], [3]. Experimentally, it has been shown that optical injection

locking of BARITT oscillators is possible. A locking bandwidth

of 0.6 percent is obtained which may be viewed as a useful value.
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There is reasonable agreement between measurement and theory.

In the higher microwave range, it is recommended to use light

modulated by a subharmonic of the oscillator frequency as the

optical injection signal because; at present, it might be difficult to

modulate laser light using high microwave frequencies.
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Comments on “A Rigorous Tectilque for Measuring

the Scattering Matrix of a Multiport Device with a

Two-Port Network Analyzer”

H. DROPKIN, SENIOR MEMBER, IEEE

The recent article’” by Tippet and Speciale uses the matrix

formulation of the generalized scattering parameter renormaliza-

tion transformation in the form

s’=(~–s)-’(s -r)(~-sr)-’(s) s). (1)

Here S is the N X N scattering matrix of an N port with port line

impedances (, S’ is the transformed scattering matrix when the

port impedances are altered to Z, and r is the diagonal matrix of

reflection coefficients of Z as seen from line impedances {, and 1

is the identity matrix.

Equation (1) can be simplified as follows:

S=(I– S)-’S(I– S) (2)

ws=(~-s) -’[(s-r )(z-sr)-’-s]s)-s). (3)

The bracketed term is

(s-r) (~-sr)-’- s(sr)(~(sr)r)-’

=[(s-r)-s(~- sr)l(~-sr)-’

=-(~-s’)r(~-sr)-’.

Note the cancellation of the individual S terms. Since ( I – S2 ) =

(1 – S)(1 + S), the prefactor in (3) also cancels, with the final

result

s’=s–(~+ s)r(~–sr)-’(~– s). (4)

Equation 4 has reduced the number of matrix inversions needed

from 2 to 1. Also, S’ is now obtained by an additive correction to
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be applied to S, and these corrections contain r as an explicit

factor. When r is small (small line impedance changes), a good

first order approximation is

s’=s-(~+s)r(~-s) (5)

which has no matrix inversions.

In some cases the inverse required by (1) but not by (4) may

not even exist. A simple example is given by a matched Iossless

two port for which

()

#
s= 0

#Q o

and for which (1 – S) has determinant O for some values of 6.

Clearly, less extreme cases can be numerically difficult, especially

since the components of S are to be experimentally measured.

This form of the transformation should require less computa-

tion and have improved accuracy.

Reply ~ by John C. Tippet and Ross A. Speciale 3

The authors of the originaf paper’ would like to warmly

commend Dr. H. Dropkin for constructively contributing a fur-

ther simplification of the generalized scattering matrix renormali-

zation transform, and would like to take this opportunity to add

some related comments.

Firstj it is interesting to notice the alternative formulation of

the generalized transform, given in the original 1980 IEEE-CAS

symposium paper [2]

s’=(~–r)-’(s -r)(~–rs)-’(r) r). (1)

This alternative form of the transform was obtained as an

application of the projective matrix transformation

S’=(T1. S+ T2)(T3. S’+T4)-1 (2)

first introduced in 1977 [3] and later generalized in 1981 [4]. The

form (1) has been successfully verified analytically in the 2 x 2

case of two-port networks [5] and it is, therefore, believed to be

totally equivalent to the original form given in [1]

s’=(~–s)-’(s –r)(~–sr)-’(s)s) (3)

and to the simplified formulation found by Dropkin

sf=s–(z+ s)r(~–sr)-’(~– s). (4)

We h~ve been so far unable to prove analytically the equivalence

of the ~ternative form (1) the original form (3), in the generaf

case. It i?+ ~wever, interesting to notice that, by exploiting the

identity ‘

r=(z–r)-’r(z–r) (5)

and proceeding in a way similar to that suggested by Dropkin, it

is possible to simplify the form (1) to

s’=(~+r)s(~– rs)-’(~–r)–r. (6)

This second simplified form (6) also requires only one matrix

inversion &d the matrix to be inverted, 1 – IX, is in generaf

different from the matrix 1– Sr that must be inverted when using

the Dropkin form (4). These matrices are either both singular or

both nonsingular at the same time. Furthermore, it should be

easier to prove the mutuaf equivalence of the two simplified

forms (4) and (6) analytically. While attempting this proof, we

2Manuscript received July 26, 1982.
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would like to propose it as a challenge to the adventurous reader.

Another aspect of the generalized renormalization transform that

we have not been able to prove analytically relates to what may

be called the inverse transform, expressing the matrix S as

function of the matrix S’. Considering the definition of the

reflection-coefficient-matrix r we would expect to be able to

invert any of the forms (1), (3), (4), and (6) by simply exchanging

the matrices S and S’, while at the same time changing the sign of

the matrix 17. In tlus connection, it is easy to see that the form (6)

may be solved for the matrix S, obtaining

s=(~–r)(~+ s’r)-’(s’+ r)(~– r)-’ (7)

and thus this inverted form may be proved to be equivalent to

s=(~–r)s’( ~+rs’)-’(~+r)+r (8)

and should also be equivalent to

s=,s’+(~+ s’)r(z+ s’r)-’(z- s’). (9)

These last two forms have been obtained from (6) and (4),

respectively, by mutually exchanging the matrices S and S’ and

changing the sign of the matrix I’, as indicated before. ‘

Finally, we would like to point out that the success of our

experimental verification of the renormalization transform is

clearly a consequence of the fact that our transform was derived

for scattering matrices defined on the basis of voltage waves (or

traveling waves) rather than for power-wave scattering matrices.

This is the kind of scattering matrix obtained from any calibrated

automated network analyzer. In these respects, we would like to

express our total agreement with Professor Wood’s statement [6]

declaring the impossibility of performing power-wave scattering

measurements on any known form of ANA. Indeed, all known

forms of ANA use voltage sensors to monitor the incident,

reflected, and transmitted waves and could not possibly sense

power-waves under practical conditions, where the ANA mea-

surement-port impedances, as seen from the device under test, are

both complex and frequency-dependent. A generally unrecog-

nized aspect of ANA calibration methods is that these have the

capability of eliminating measurement-port mismatch-errors, be-

cause of including implied voltage-wave-scattering-matrix renor-

malization to the nominal wave-impedance of at least one of the

calibration standards.

It would appear that the concept of power-wave scattering

matrix has outlived its usefulness, especially considering the fact

that the net active power flow entering a network through any

given cluster of n ports may be expressed by means of the

Hermitian form

,= : *. -[( Z:)-’+ Z-’] -[(z* )-’-q-q
b

m —

a, ;~* ;- ~_-z< 1--- -( ;:; -7; ;:; -
“ :

(lo)

Where the a,’s and b,’s (i = 1,. ... n ) are the incident and emerg-

ing voltage-waves, respectively, and Z, is the wave-normalization

impedance matrix (Z: = ~).
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Comment on “The Exact Noise Figure of Amplifiers

with Parallel Feedback and Lossy Matching Circuit”

.JAKOB ENGBERG

I found the short paper of K. B. Niclas “The Exact Noise

Figure of Amplifiers with Parallel Feedback and Lossy Matching

Circuits’” very interesting, but, except for the approximated

formulas, it contained only little new information, since my paper

“Simultaneous Input Power Match and Noise Optimization using

Feedback” [2] included most of the formulas. In that paper, I

have developed a general form of noise parameters of a three-port

with combinations of parallel and series feedback (or imbedding)
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elements. These formulas include both the formula of Niclas and

of Iversen [1, [9]]. The formulas have been used in the lossless

case to develop an amplifier with simultaneous noise and power

input match.

Reply ~ by Karl B. Niclas 3

While I was aware of the existence of Mr. Engberg’s paper,

“Simultaneous Input Power Match and Noise Optimization using

Feedback” [2], I was not able to secure a copy and consequently

was unaware of its contents until his comments arrived. However,

after careful study of his publication, I have to disagree with his

conclusion that the information in my short paper contains only

little new information outside of ‘the approximation formulas. It

must have escaped Mr. Engberg that his formulas for the equiva-

lent noise parameters of the parallel feedback amplifier (3) in [2]

deviate from mine (4) in [1] and only for the special ease of

Y~ = O ( YF~ = O) was I able to find agreement for the parameters

R; ~d y; ( R( and Y&). Since no derivations are presented in

Mr. Engberg’s paper, I am not in a position to explain the

discrepancies, It should be noted, however, that results calculated

with formulas given in my paper are in perfect agreement with

those computed with the aid of Compact which is based on

Hillbrand’s and Russer’s correlation matrix [3], [4].
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